วันจันทร์ที่ 8 กันยายน พ.ศ. 2551

หลักการออกแบบ optical fiber digital communication

หลักการออกแบบ Optical Fiber Digital Communication

แบบฝึกหัด
ข้อ1.
30 mbit ระยะทาง 45 km
1.Preformanc = ไม่ระบุ
2.BL = 30*45 =1,350
3.เลือก optical source เลือก LED power ที่ -15
เพราะ ราคาประหยัด
4.เลือก optical fiber เลือก Graded Index Multimode
เพราะ ลองรับ BL แบร์นวิด ที่ 1.5 GHz/km
5.เลือก optical detector เลือก PIN - FET มีค่า sensitivity -60
เพราะ ราคาประหยัด
6.Lmax = Po - Por
แทนค่า (-15) - (-60)
= 65
7.Lf = Lmax (Lc + Ls + Pm)
กำหนด Lc = 0.50
กำหนด Ls = 1db
กำหนด Pm = 6db
แทนค่า Lf = 65- (0.50 +1 +6
= 57.50
8.Dmax = Lf/Lfimax
Lf = 57.50
Lfimax = 2
แทนค่า 57.50/2
= 28.75k
ข้อ2.
50 mbit ระยะทาง 100 km
1.Preformanc = ไม่ระบุ
2.BL = 50*100 = 5,000
3.เลือก optical source เลือก LED power ที่ -20
เพราะ ราคาประหยัด
4.เลือก optical fiber เลือก Graded Index Multimode
เพราะ ลองรับ BL แบร์นวิด ที่ 1.5 GHz/km
5.เลือก optical detector เลือก PIN - FET มีค่า sensitivity -50
เพราะ ราคาประหยัด
6.Lmax = Po - Por
แทนค่า (-20) - (-50)
= 70
7.Lf = Lmax (Lc + Ls + Pm)
กำหนด Lc = 0.50
กำหนด Ls = 1db
กำหนด Pm = 5db
แทนค่า Lf = 70- (0.50 +1 +5)
= 31.75
8.Dmax = Lf/Lfimax
Lf = 63.50
Lfimax = 2
แทนค่า 63.50/2

= 31.57kmล


***************************************************************************************

เครื่อข่ายความเร็วสูง

เครือข่ายความเร็วสูง
SDH ย่อมาจาก Synchronous Digital Heirarchy SDH เป็นคำศัพท์ที่มีความหมาย
ถึงการวางลำดับการสื่อสารแบบซิงโครนัสในตัวกลางความเร็วสูง ซึ่งโดยปกติใช้
สายใยแก้วเป็นตัวนำสัญญาณ การสื่อสารภายในเป็นแบบซิงโครนัส คือส่งเป็นเฟรม
และมีการซิงค์บอกตำแหน่ง เริ่มต้นเฟรมเพื่อให้อุปกรณ์รับตรวจสอบสัญญาณ
ข้อมูลได้ถูกต้อง มีการรวมเฟรมเป็นช่องสัญญาณที่แถบกว้างความเร็วสูงขึ้น
และจัดรวมกันเป็นลำดับ เพื่อใช้ช่องสื่อสารบนเส้นใยแก้วนำแสง ความเป็น
มาของ SDH มีมายาวนานแล้ว เริ่มจากการจัดการโครงข่ายสายโทรศัพท์
ซึ่งสัญญาณโทรศัพท์ได้เปลี่ยนเป็นดิจิตอล โดยช่องสัญญาณเสียงหนึ่งช่อง
ใช้สัญญาณแถบกว้าง 64 กิโลบิต แต่ในอดีตการจัดมาตรฐานลำดับชั้นของ
เครือข่ายสัญญาณเสียงยังแตกต่างกัน เช่นในสหรัฐอเมริกา มีการจัดกลุ่มสัญญาณ
เสียง 24 ช่อง เป็น 1.54 เมกะบิต หรือที่เรารู้จักกันในนาม T1 และระดับต่อไปเป็น
63.1, 447.3 เมกะบิต แต่ทางกลุ่มยุโรปใช้ 64 กิโลบิตต่อหนึ่งสัญญาณเสียง และจัด
กลุ่มต่อไปเป็น 32 ช่องเสียงคือ 2.048 เมกะบิต ที่รู้จักกันในนาม E1 และจัดกลุ่ม
ใหญ่ขึ้นเป็น 8.44, 34.36 เมกะบิต
การวางมาตรฐานใหม่สำหรับเครือข่ายความเร็วสูงจะต้องรองรับการใช้งานต่าง ๆ
ทั้งเครือข่ายสัญญาณโทรศัพท์ และสัญญาณมัลติมีเดียอื่น ๆ เช่น สัญญาณโทรทัศน์
ข้อมูลบนอินเทอร์เน็ต และที่จะเกิดขึ้นในอนาคตอีกได้ คณะกรรมการจัดการมาตร
ฐาน SDH จึงรวมแนวทางต่าง ๆ ในลักษณะให้ยอมรับกันได้ โดยที่สหรัฐอเมริกา
เรียกว่า SONET ดังนั้นจึงอาจรวมเรียกว่า SDH/SONET การเน้น SDH/SONET
ให้เป็นกลางที่ทำให้เครือข่ายประยุกต์ใช้งานต่าง ๆ วิ่งลงตัวได้จึงเป็นเรื่องสำคัญ
เนื่องจากโครงข่ายของ SDH/SONET ใช้เส้นใยแก้วนำแสงเป็นหลัก โดยวางแถบ
กว้าง พื้นฐานระดับต่ำสุดไว้ที่ 51.84 เมกะบิต โดยที่ภายในแถบกว้างนี้จะเป็นเฟรม
ข้อมูลที่สามารถนำช่องสัญญาณเสียงโทรศัพท์ หรือการประยุกต์อื่นใดเข้าไปรวมได้
และยังรวมระดับช่องสัญญาณต่ำสุด 51.84 เมกะบิตนี้ให้สูงขึ้น เช่นถ้าเพิ่มเป็นสาม
เท่าของ 51.84 ก็จะได้ 155.52 ซึ่งเป็นแถบกว้างของเครือข่าย ATM
โมเดลของ SDH แบ่งออกเป็นสี่ชั้น เพื่อให้มีการออกแบบและประยุกต์เชื่อมต่อ
ได้ตามมาตรฐานหลัก
ชั้นแรกเรียกว่าโฟโตนิก เป็นชั้นทางฟิสิคัลที่เกี่ยวกับการเชื่อมเส้นใยแก้วนำแสง
และอุปกรณ์ประกอบทางด้านแสง
ชั้นที่สอง เป็นชั้นของการแปลงสัญญาณแสง เป็นสัญญาณไฟฟ้า หรือในทางกลับ
กัน เมื่อแปลงแล้วจะส่งสัญญาณไฟฟ้าเชื่อมกับอุปกรณ์สื่อสารอื่น ๆ ชั้นนี้ยังรวม
ถึงการจัดรูปแบบเฟรมข้อมูล ซึ่งเป็นเฟรมมาตรฐาน แต่ละเฟรมมีลักษณะชัดเจนที่
ให้อุปกรณ์ตัวรับและตัวส่งสามารถซิงโครไนซ์เวลากันได้ เราจึงเรียกระบบนี้ว่า ซิงโครนัส
ชั้นที่สามเป็นชั้นที่ว่าด้วยการรวมและการแยกสัญญาณ ซึ่งได้แก่วิธีการมัลติเพล็กซ์
และดีมัลติเพล็กซ์ เพราะข้อมูลที่เป็นเฟรมนั้นจะนำเข้ามารวมกัน หรือต้องแยกออก
จากกัน การกระทำต้องมีระบบซิงโครไนซ์ระหว่างกันด้วย
ชั้นที่สี่ เป็นชั้นเชื่อมโยงขนส่งข้อมูลระหว่างปลายทางด้านหนึ่งไปยังปลายทางอีกด้าน
หนึ่ง เพื่อทำให้เกิดวงจรการสื่อสารที่สมบูรณ์ ในการสื่อสารระหว่างอุปกรณ์หนึ่งไป
ยังอีกอุปกรณ์หนึ่งจึงเสมือนเชื่อมโยงถึงกันในระดับนี้
เพื่อให้การรับส่งระหว่างปลายทางด้านหนึ่งไปยังอีกปลายทางด้านหนึ่งมีลักษณะสื่อ
สารไปกลับได้สมบูรณ์ การรับส่งจึงมีการกำหนดแอดเดรสของเฟรมเพื่อให้การรับ
ส่งเป็นไปอย่างถูกต้อง กำหนดโมดูลการรับส่งแบบซิงโครนัส ที่เรียกว่า STM – Synchronous
Transmission Module โดย เฟรมของ STM พื้นฐาน มีขนาด 2430 ไบต์ โดยส่วนกำหนด
หัวเฟรม 81 ไบต์ ขนาดแถบกว้างของการรับส่งตามรูปแบบ STM จึงเริ่มจาก 155.52 เมกะ
บิตต่อวินาที ไปเป็น 622.08 และ 2488.32 เมกะบิตต่อวินาที จะเห็นว่า STM ระดับแรกมี
ความเร็ว 155.52 เมกะบิตต่อวินาที ซึ่งเป็น 3 เท่าของแถบกว้างพื้นฐานของ SDH ที่ 51.84
เมกะบิตต่อวินาที STM จึงเป็นส่วนหนึ่งที่อยู่ภายใน SDH ด้วย
เมื่อพิจารณาให้ดีจะเห็นว่า ผู้ออกแบบมาตรฐาน SDH ต้องการให้เป็นทางด่วนข้อมูล
ข่าวสาร ที่จะรองรับระบบเครือข่ายโทรศัพท์ที่มีอัตราการส่งสัญญาณกันเป็น T1, T3,
หรือ E1, E3 ขณะเดียวกันก็รองรับเครือข่าย ATM (Asynchronous Transfer Mode)
ที่ใช้ความเร็วตามมาตรฐาน STM ดังที่กล่าวแล้ว โดยที่ SDH สามารถเป็นเส้นทางให้กับ
เครือข่าย ATM ได้หลาย ๆ ช่องของ ATM ในขณะเดียวกัน
SDH จึงเสมือนถนนของข้อมูลที่ใช้เส้นใยแก้วนำแสงเพื่อรองรับแถบกว้างของ
สัญญาณสูง ขณะเดียวกันก็ใช้งานโดยการรวมสัญญาณข้อมูลต่าง ๆ เข้ามาร่วมใช้
ทางวิ่งเดียวกันได้ SDH จึงเป็นโครงสร้างพื้นฐาน เสมือนหนึ่งเป็นถนนเชื่อมโยง
ที่ต่าง ๆ เข้าด้วยกัน ที่สำคัญคือ ถนนเหล่านี้จะเป็นทางด่วนที่รองรับการประยุกต์
ใช้งานในอนาคต SDH หรือทางด่วนข้อมูล จะเกิดได้หรือไม่ คงต้องคอยดูกันต่อไป
















เอกสารอ้างอิง :
http://web.ku.ac.th/schoolnet/snet1/network/sdh.htm


สายใยแก้วนำแสง
สาย สัญญาณที่ใช้กับเครือข่ายคอมพิวเตอร์ใน
ปัจจุบันมี 2 ประเภท โดยแบ่งตามชนิดของตัวนำที่
ช้ประเภทแรกคือ แบบที่ใช้โลหะเป็นตัวนำสัญญาณ
(Conductive Metal) เช่น สายคู่บิดเกลียว (Twisted
Pairs) และสายโคแอ็กซ์ (Coaxial Cable) ซึ่งปัญหา
ของสายที่มีตัวนำเป็นโลหะนั้นก็คือ สัญญาณที่วิ่งอยู่
ภายในสายนั้น อาจจะถูกรบกวนได้โดยคลื่นแม่เหล็ก
ไฟฟ้าแหล่งต่าง ๆ เช่น มอเตอร์ไฟฟ้า เครื่องใช้ไฟ
ฟ้าต่าง ๆ ที่ผลิตสนามแม่เหล็ก หรือแม้กระทั่งปรากฏ
การณ์ธรรมชาติ เช่น ฟ้าผ่า เป็นต้น และการเดินสาย
เป็นระยะทางไกลมาก ๆ เช่น ระหว่างประเทศจะมีการ
สูญเสียของสัญญาณเกิดขึ้น จึงต้องใช้อุปกรณ์สำหรับ
ทวนสัญญาณติดเป็นจำนวนมาก เพราะฉะนั้นจึงมีการ
คิดค้นและพัฒนาสายสัญญาณแบบใหม่ ซึ่งใช้ตัวนำซึ่ง
ไม่ได้เป็นโลหะขึ้นมาก็คือ สายใยแก้วนำแสง (Fiber
Optic) ซึ่งใช้สัญญาณแสงในการส่งสัญญาณไฟฟ้า
ทำให้การส่งสัญญาณไม่ถูกรบกวนจากสนามแม่เหล็ก
ไฟฟ้าต่าง ๆ ทั้งยังคงทนต่อสภาพแวดล้อมอีกด้วย
และตัวกลางที่ใช้สำหรับการส่งสัญญาณแสงก็คือ
ใยแก้วซึ่งมีขนาดเล็กและบางทำให้ประหยัดพื้นที่
ไปได้มาก สามารถส่งสัญญาณไปได้ไกลโดยมีการ
สูญเสียของสัญญาณน้อย ทั้งยังให้อัตราข้อมูล
(Bandwidth) ที่สูงยิ่งกว่าสายแบบโลหะหลายเท่าตัว


โครงสร้างของใยแก้วนำแสง
ส่วนประกอบของใยแก้วนำแสงประกอบด้วย
ส่วนสำคัญคือ ส่วนที่เป็นแกน (Core) ซึ่งจะอยู่ตรง
กลางหรือชั้นในแล้วหุ้มด้วยส่วนห่อหุ้ม (Cladding)
แล้วถูกห่อหุ้มด้วยส่วนป้องกัน (Coating) อีกชั้นหนึ่ง
โดยที่แต่ละส่วนนั้นทำด้วยวัสดุที่มีค่าดัชนีหักเหของ
แสงต่าง กัน ทั้งนี้ก็เพราะต้องคำนึงถึงหลักการหักเห
และสะท้อนกลับห
มดของแสง ส่วนที่เหลือก็จะเป็น
ส่วนที่ช่วยในการติดตั้งสายสัญญาณได้ง่ายขึ้น เช่น
Strengthening Fiber ก็เป็นส่วนที่ป้องกันไม่ให้สาย
ไฟเบอร์ขาดเมื่อมีการดึงสายในตอนติดตั้งสาย สัญญาณ











แกน (Core)

เป็นส่วนกลางของเส้นใยแก้วนำแสง และเป็นส่วน
นำแสง โดยดัชนีหักเหของแสงส่วนนี้ต้องมากกว่าส่วน
ของแคลด ลำแสงที่ผ่านไปในแกนจะถูกขังหรือเคลื่อน
ที่ไปตามแกนของเส้นใยแก้วนำแสงด้วย กระบวนการ
สะท้อนกลับหมดภายใน

ส่วนห่อหุ้ม (Cladding)
เป็นส่วนที่ห่อหุ้มส่วนของแกนเอาไว้ โดยส่วนนี้จะมีดัชนี
หักเหน้อยกว่าส่วนของแกน เพื่อให้แสงที่เดินทางภายใน
สะท้อนอยู่ภายในแกนตามกฎของการสะท้อนด้วยการสะท้อน
กลับหมด โดยใช้หลักของมุมวิกฤติ
ส่วนป้องกัน (Coating/Buffer)
เป็น ชั้นที่ต่อจากแคลดที่กันแสงจากภายนอกเข้าเส้น
ใยแก้วนำแสงและยังใช้ประโยชน์ เมื่อมีการเชื่อมต่อเส้นใย
แก้วนำแสง โครงสร้างอาจจะประกอบไปด้วยชั้นของพลาส
ติกหลาย ๆ ชั้น นอกจากนั้นส่วนป้องกันยังทำหน้าที่เป็นตัว
ป้องกันจากแรงกระทำภายนอกอีกด้วย ตัวอย่างของค่าดัชนี
หักเห เช่น แกนมีค่าดัชนีหักเหประมาณ 1.48 ส่วนขอแคลด
และส่วนป้องกันซึ่งทำหน้าที่ป้องกันแสงจากแกนไปภายนอก
และป้องกัน แสงภายนอกรบกวน จะมีค่าดัชนีหักเหเป็น 1.46
และ 1.52 ตามลำดับ
เอกสารอ้างอิง
http://www.thaiinternetwork.com/chapter/detail.php?id=0043

ข้อสอบ
1. Synchronous Digital Heirarchy ข้อใดถูกต้อง
ก. SDH *
ข. ข. DSH
ค. ค.SDE
ง. ง.ถูกทุกข้อ
2. Synchronous Digital Heirarchy หมายถึงข้อใด
ก. การวางลำดับการสื่อสารแบบซิงโครนัส *
ข. ตัวส่งสัญญาณ
ค. ตัวรับสัญญาณ
ง. ผิดทุกข้อ
3. โดยปกติใช้สายใยแก้วเป็นตัวนำสัญญาณ การสื่อสารภายใน
เป็นแบบซิงโครนัส คือส่งเป็นเฟรม และมีอะไรที่ใช้ในการบอกตำแหน่ง
ก. ซิงค์ *
ข. สายเคเบิ้ล
ค. สายโทรศัพท์
ง. ถูกทุกข้อ
4. ในสหรัฐอเมริกา มีการจัดกลุ่มสัญญาณเสียง มีกี่ช่อง
ก. 24 ช่อง*
ข. 25 ช่อง
ค. 26 ช่อง
ง. 27 ช่อง
5. โมเดลของ Synchronous Digital Heirarchy แบ่งออกกี่ชั้น
ก. 4 ชั้น *
ข. 5 ชั้น
ค. 6 ชั้น
ง. 7 ชั้น
6. ชั้นแรกโมเดลของ Synchronous Digital Heirarchy
เรียกอีอย่างหนึ่งว่าอย่างไร
ก. โฟโตนิก *
ข. ลิงค์
ค. ซิงค์
ง. ผิดทุกข้อ
7. การแปลงสัญญาณแสง เป็นสัญญาณไฟฟ้าอยู่ในชั้ที่เท่าไร
ก. 2 *
ข. 3
ค. 4
ง. 5
8. การรวมและการแยกสัญญาณอยู่ในชั้นที่เท่าไร
ก. 2
ข. 3 *
ค. 4
ง. 5
9. ประเทศใดเรียกเส้นใยแก้วนำแสงเป็นหลักเป็น SONET
ก. อังกฤษ
ข. อเมริกา*
ค. อินเดีย
ง. จีน
10. กลุ่มยุโรปใช้ กิโลบิตต่อหนึ่งสัญญาณเสียง
ก. 64 กิโลบิต *
ข. 65 กิโลบิต
ค. 66 กิโลบิต
ง. 67 กิโลบิต
หมายเหตุ เครื่องหมาย * อยู่หลังข้อไหนข้อนั้นถูกต้อง


OSPF

OSPF
OSPF เป็นเร้าติ้งโปรโตคอลที่ได้รับการพัฒนาขึ้นมาใช้บนเน็ตเวิร์ก
IP โดยคณะทำงาน Interior Gateway Protocol (IGP)
ย่อยแห่งคณะกรรมการ Internet Engineering Task Force (IETF)
คณะทำงานนี้ได้ถูกก่อตั้งมาตั้งแต่ปี 1998 เพื่อทำหน้าที่ออกแบบเร้าติ้งโปรโตคอล
ที่ใช้บนเน็ตเวิร์กภายในองค์กร โดยมีพื้นฐานมาจากอัลกอริทึมในทางคอมพิวเตอร์แบบ
Shortest Path First (SPF) อัลกอริทึมนี้มีอีกชื่อเรียกหนึ่งว่า
Dijkstra’S Algorithm ซึ่งเป็นชื่อที่ตั้งตามชื่อของนักคณิตศาสตร์ที่เป็นผู้ออก
แบบและคิดค้นอับกอ ริทึมนี้

OSPF มีคุณลักษณะที่สำคัญ
1. เป็นเร้าติ้งโปรโตคอลมาตรฐานและเป็นมาตรฐานสากล ข้อกำหนดและพฤติกรรม
ต่าง ๆ ได้รับการอธิบายไว้อย่างชัดเจนใน RFC (Request for Comments)
IETF ได้พัฒนา OSPF ขึ้นมาในปี 1988 ส่วนเวอร์ชันล่าสุดซึ่งรู้จักกันในนาม
OSPF เวอร์ชัน 2 ได้รับการอธิบายไว้ใน RFC 2328
2. เป็นเร้าติ้งโปรโตคอลที่อาศัยการอัปเดตสถานะของเน็ตเวิร์กอินเตอร์เฟซไปให้
กับเร้าเตอร์เพื่อบ้านแล้วให้เร้าเตอร์เพื่อนบ้านสร้างภาพรวมของเน็ตเวิร์ กทั้งหมด
และคำนวณหาเส้นทางเอง แต่จะไม่ ส่งเร้าติ้งเทเบิลทั้งตารางไปให้เร้าเตอร์เพื่อนบ้าน
เหมือนกันในกรณีของ Distance Vector
3. มีการเลือกเส้นทางที่สั้นที่สุดโดยพิจารณาจากแบนด์วิดธ์ (Bandwidth)
4. รอง รับการตั้งแอดเดรสแบบมีจำนวนบิตของ Subnet Mask ไม่เท่ากัน
(Variable Length Subnet Mask: VLSM) และมีการส่ง Subnet
Mask ไปให้เร้าเตอร์เพื่อนบ้านด้วย
5. รอง รับการสร้างสิ่งที่เรียกว่า “OSPF Area” ซึ่งสามารถทำให้เน็ตเวิร์กที่
ใช้งาน OSPF สามารถจัดแบ่งเน็ตเวิร์กออกเป็นโซนหรือพื้นที่ย่อย ๆ ได้
(เรียกว่าการแบ่ง Area) ทั้งนี้เพื่อจำกัดสโคป หรือขอบเขตของการเปลี่ยนแปลง
เน็ตเวิร์กโทโพโลยี
6. รอบรับการทำ “Route summarization”
7. รองรับการทำการกระจายแพ็กเก็ตไปบนเส้นทางที่มีแบนด์วิดธ์เท่ากัน
8. สามารถทำ “Route authentication” ระหว่างเร้าเตอร์เพื่อตรวจสอบ
ตัวตนซึ่งกันและกันก่อน
ที่จะมีการแลกเปลี่ยนข้อมูลระหว่างกัน
9. ไวมากต่อพฤติกรรมการเปลี่ยนแปลงเน็ตเวิร์กโทโพโลยี (Fast convergence)
Wireshark เป็นโปรแกรมที่ใช้ในการดักจับ Packet ที่มีการรับส่งกันบนเครือข่าย
ในการดักจับ Packet นั้น โปรแกรม Wireshark นั้นจะต้องทำงานที่เครื่องคอม
พิวเตอร์ในเครือข่ายนั้น
Network Diagram ที่ใช้ Wireshark ในการดักจับ packet แสดงภาพของ
Network Diagram ที่ใช้ในการดักจับ Packet ของการทำงานของ Open
Shortest Path First (OSPF) Protocol ซึ่งจะเป็นการติดต่อเปลี่ยนแปลง
Update Routing Protocol ระหว่าง Core Switch และ Router ใน
Area เดียวกับการค้นหาเร้าเตอร์ ข้างเคียงที่รัน OSPF จะเกิดขึ้นด้วยการส่งแพ็กเก็ต
พิเศษที่เรียกว่า HELLO PACKET ออกไปไปโดยใช้มัลติคาสก์แอดเดรส 224.0.0.5
หลังจากนั้นแอดเดรสของเร้าเตอร์ ข้างเคียงที่ค้นพบได้จะถูกเก็บไว้ในตาราง OSPF
Neighbor Table
ผลลัพธ์ที่ได้จะแสดงหมายเลข IP Address ของเร้าเตอร์ และ Switch ข้างเคียง
แต่ละตัวที่ค้นพบได้ทางซีเรียสอินเตอร์เฟซต่างๆ กัน เมื่อความสัมพันธ์ระหว่างเพื่อนบ้าน
ถูกสร้างขึ้นได้สำเร็จ สถานะ (State) ที่เห็นจะอยู่ในสถานะ FULL

หลัง จากฟอร์มความสัมพันธ์ระหว่างกันได้แล้ว เร้าเตอร์จะมีการส่ง Hello packet
ออกไปให้เร้าเตอร์เพื่อนบ้านทุก ๆ ระยะๆ ตามช่วงเวลาที่เรียกว่า Hello Interval
เพื่อยืนยันว่าตนเองยังมีชีวิตอยู่ หากเร้าเตอร์ไม่ได้ รับ HELLO PACKET มาจาเร้าเตอร์
เพื่อนบ้านหลังจากช่วงเวลาที่เรียกว่า Dead Interval ผ่านไปมันตะถือว่าเร้าเตอร์
เพื่อนบ้านนั้น ๆ ได้ดาวน์ลงไป
รูปแบบของ Hello Packetในการสร้างความสัมพันธ์ของ Protocol OSPF
จาก Core Switch ที่มี Source IP Address เป็น 172.18.19.252
ซึ่งมี Destination IP Address เป็น 244.0.0.5 (Multicast Address)
BGP (Border Gateway Protocol) เป็นโปรโตคอลเลือกเส้นทางประเภท
Exterior Gateway Routing ที่ใช้เพื่อการเชื่อมต่อเราเตอร์ (Router)
และเครือข่ายที่อยู่ต่างโดเมน (Domain) กันบนอินเทอร์เน็ต
BGP ใช้ Protocol TCP Port หมายเลข 179 เพื่อใช้ในการขนถ่ายข้อมูลข่าวสาร
โดยมีการใช้ TCP เพื่อการสถาปนาการเชื่อมต่อก่อนจะแลกเปลี่ยนข้อมูลข่าวสารระหว่าง
เราเตอร์ BGP ทั้งสอง (Peer Router) จากนั้นก็จะทำการแลกเปลี่ยนข้อมูลข่าวสาร
รวมทั้งการเปิดสัมพันธไมตรีก่อนที่จะแลกเปลี่ยนข่าวสารระหว่างกันต่อไป
ข้อมูล ข่าวสารที่เราเตอร์ทั้งสองใช้เพื่อการแลกเปลี่ยนกัน รวมไปถึงข่าวสารที่แสดงถึง
ความสามารถในการเข้าถึงกันได้ โดยข่าวสารนี้เป็นในรูปแบบของเลขหมาย AS ของ
แต่ละฝ่าย ซึ่งต่างฝ่ายถือเป็นเส้นทางในการเข้าหากัน ข้อมูลนี้จะช่วยให้เราเตอร์สามารถ
สร้างผังของเส้นทางที่ปราศจากลูป (Loop) ในการเข้าหากัน อีกทั้งเราเตอร์ยังใช้เพื่อ
เป็นการกำหนดเส้นทางเชิงนโยบายที่มีเนื้อหาที่ กำหนดข้อจำกัดต่าง ๆ

จุดประสงค์ของการใช้ BGP
1.BGP ให้ประโยชน์อย่างเห็นได้ชัด โดยเฉพาะการเชื่อมต่อเครือข่ายต่าง ๆ รวมทั้งลูกค้า
และผู้ให้บริการโทรศัพท์ รวมทั้งเครือข่ายอื่น ๆ
2.BGP เหมาะอย่างยิ่งสำหรับการเชื่อมต่อเครือข่ายในรูปแบบของ Autonomous ต่างๆ
เข้าด้วยกัน
3.BGP เหมาะอย่างยิ่งสำหรับการเชื่อมต่อเครือข่ายในระดับ Enterprise หากองค์กร
ของท่านมีการเชื่อมต่อกับอินเทอร์เน็ตแบบหลายเชื่อมต่อเพื่อผลแห่ง Redundancy BGP
ก็สามารถทำ Load Balancing Traffic ได้บนเส้นทางที่เป็น Redundant Link
4.จัดเลือกเส้นทางผ่านทางเครือข่ายไปยัง Autonomous System อื่น ๆ ที่เชื่อมต่อกัน
5.มีการเชื่อมต่อระหว่าง Autonomous System มากกว่า 1 เส้น
6.ควบคุมการลำเลียงข้อมูลข่าวสารที่วิ่งไปมาระหว่างระบบ Autonomous System
7.ท่านยังสามารถใช้ Policy ที่กำหนดให้ท่านสามารถเลือกเส้นทางที่ดีที่สุดเพื่อเดิน
ทางไปสู่ปลายทาง